Constrained Optimization for Prediction of Posture

نویسنده

  • Erik J. Dijkstra
چکیده

The ability to stand still in one place is important in a variety of activities of daily living. For persons with motion disorders, orthopaedic treatment, which changes geometric or biomechanical properties, can improve the individual’s posture and walking ability. Decisions on such treatment require insight in how posture and walking ability are affected, however, despite expectations based on experience, it is never a-priori known how a patient will react to a treatment. As this is very challenging to observe by the naked eye, engineering tools are increasingly employed to support clinical diagnostics and treatment planning. The development of predictive simulations allows for the evaluation of the effect of changed biomechanical parameters on the human biological system behavior and could become a valuable tool in future clinical decision making. In the first paper, we evaluated the use of the Zero Moment Point as a computationally inexpensive tool to obtain the ground reaction forces (GRFs) for normal human gait. The method was applied on ten healthy subjects walking in a motion analysis laboratory and predicted GRFs are evaluated against the simultaneously measured force plate data. Apart from the antero-posterior forces, GRFs are well-predicted and errors fall within the error ranges from other published methods. The computationally inexpensive method evaluated in this study can reasonably well predict the GRFs for normal human gait without using prior knowledge of common gait kinetics. The second manuscript addresses the complications in the creation and analysis of a posture prediction framework. The fmincon optimization function in MATLAB was used in conjunction with a musculoskeletal model in OpenSim. One clear local minimum was found in the form of a symmetric standing posture but perturbation analyses revealed the presence of many other postural configurations, each representing its own unique local minimum in the feasible parameter space. For human postural stance, this can translate to there being many different ways of standing without actually noticing a difference in the efforts required for these poses. Descriptors: Static optimization, Multibody system, Musculoskeletal model

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple User Defined End-Effectors with Shared Memory Communication for Posture Prediction

Inverse Kinematics on a human model combined with optimization provides a powerful tool to predict realistic human postures. A human posture prediction tool brings up the need for greater flexibility for the user, as well as efficient computation performance. This paper demonstrates new methods that were developed for the application of digital human simulation as a software package by allowing...

متن کامل

Stock Portfolio-Optimization Model by Mean-Semi-Variance Approach Using of Firefly Algorithm and Imperialist Competitive Algorithm

Selecting approaches with appropriate accuracy and suitable speed for the purpose of making decision is one of the managers’ challenges. Also investing decision is one of the main decisions of managers and it can be referred to securities transaction in financial markets which is one of the investments approaches. When some assets and barriers of real world have been considered, optimization of...

متن کامل

On the hybrid conjugate gradient method for solving fuzzy optimization problem

In this paper we consider a constrained optimization problem where the objectives are fuzzy functions (fuzzy-valued functions). Fuzzy constrained Optimization (FO) problem plays an important role in many fields, including mathematics, engineering, statistics and so on. In the other side, in the real situations, it is important to know how may obtain its numerical solution of a given interesting...

متن کامل

Quasi-Newton Methods for Nonconvex Constrained Multiobjective Optimization

Here, a quasi-Newton algorithm for constrained multiobjective optimization is proposed. Under suitable assumptions, global convergence of the algorithm is established.

متن کامل

An inverse optimization approach for determining weights of joint displacement objective function for upper body kinematic posture prediction

Human posture prediction can often be formulated as a nonlinear multiobjective optimization (MOO) problem. The joint displacement function is considered as a benchmark of human performance measures. When the joint displacement function is used as the objective function, posture prediction is a MOO problem. The weighted-sum method is commonly used to find a Pareto solution of this MOO problem. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016